Benutzer-Werkzeuge

Webseiten-Werkzeuge


Seitenleiste

ws1920:12.12.19

Dies ist eine alte Version des Dokuments!


Tagesplan

1. Erkenntnisse für Spotipy sammeln 2. Application bei Spotify registrieren 3. Emotions-Teil, Gesichtsdatenbank, Tensor flow 4. Quellen


2. - Application wurde bei Spotify registriert, APOLLON ist offiziel als Developer bei Spotify registriert


3. Emotions-Teil

Festlegung Datenset:

Um unser neuronales Netzwerk zu trainieren und zu testen, brauchen wir einen gelabelten Datensatz. Als Label brauchen wir mindestens die Kategorien Angry, Sad, Happy und Relaxed (oder eben die Dimensionen Valenz und Arousal).

Der Datensatz sollte möglichst passend für unsere Anwendung sein. Wir wollen die Stimmung anhand eines Selfies analysieren, also geht es eher um “posed expressions”, und wir brauchen eigentlich auch keine Videos sondern stille Bilder. (Also Wild / Natural Datenbanken schließen wir damit aus, aber man könnte später auch schauen ob diese auch klassifiziert werden können).

Eine Internet-Recherche über mögliche Datensätze ergibt sehr viele Möglichkeiten für Gesichts-Datensätze mit Labels (Siehe auch Wikipedia Übersicht aus der ersten Sitzung).


4. Quellen

Posed: MMI Facial Expression Data Base https://mmifacedb.eu

Faces DB http://app.visgraf.impa.br/database/faces/

Cohn-Kanade https://www.pitt.edu/~emotion/ck-spread.htm http://www.consortium.ri.cmu.edu/ckagree/

Fer von Kaggle: https://www.kaggle.com/c/challenges-in-representation-learning-facial-expression-recognition-challenge/data


Recherche, wie man anfangen kann

https://www.freecodecamp.org/news/facial-emotion-recognition-develop-a-c-n-n-and-break-into-kaggle-top-10-f618c024faa7/

https://medium.com/@lukaszlipinski/tensorflow-low-and-high-level-api-369494fc0341

https://medium.com/@jsflo.dev/training-a-tensorflow-model-to-recognize-emotions-a20c3bcd6468

https://medium.com/themlblog/how-to-do-facial-emotion-recognition-using-a-cnn-b7bbae79cd8f

https://machinelearningmastery.com/tutorial-first-neural-network-python-keras/


Es gibt das Projekt EmoPy, welches ähnliches macht wie wir:

https://github.com/thoughtworksarts/EmoPy

Hier ein zusammenfassender Artikel des Projekts: https://thoughtworksarts.io/blog/emopy-emotional-expression-toolkit/

https://thoughtworksarts.io/blog/recognizing-facial-expressions-machine-learning/


Infos wie wir anfangen ein Netzwerk aufzusetzen?

Plan, was unser Netzwerk machen soll: (Notizen werden noch hinzugefügt)

Festlegung: - wir nehmen den Datensatz dass die vielen Bilder schwarz/weiß und klein sind - wir einigen uns auf 4 Kategorien

ws1920/12.12.19.1576764638.txt.gz · Zuletzt geändert: 2019/12/19 15:10 von mariaring