2017-02-23/24: Blocktermin

2017-02-23: Wir befinden uns in der Vollendung. Heute werden wir die Visualisierung weitestgehend beenden und uns auch mit der genauen musikalischen Umsetzung befassen.

test-moving-circles b1207-beta defining new circles

from __future__ import division
 
import numpy as np
import moving_circles
import time
from scipy.fftpack import *
from moving_circles import Canvas, Circle
from microlistener import MicroListener
from random import randint, uniform
 
# chose 'VISPY' or 'MATPLOTLIB'
 
PREFERRED_BACKEND = 'MATPLOTLIB_WX'
 
######################################################
# One possible use case:
# Use timer event of backend to change graphic objects.
# Here 10 circles are created and a callback function
# action(...) is registered to be called at each timer
# event.
######################################################
###micolistener###
CHANNELS=2
RATE=44100
CHUNK=2**11
z=[]
last_values1 = (0,0,0)
last_values2 = (0,0,0)
last_values3 = (0,0,0)
 
def micro_callback(in_data, frame_count, time_info,status):
	global z
	y=np.array(np.fromstring(in_data,dtype=np.short),dtype=np.float)
	yf = fft(y)
	xf = np.linspace(0.0, (2.0*RATE), CHUNK/2)
	if CHANNELS==2:
		y=y.reshape((y.shape[0]//2,2))
	else:
		y=y.reshape((y.shape[0],1))
	#print int(np.linalg.norm(y[:,0])/2000.)*'*'
	z=np.abs(yf)
	return (in_data, status)
 
listen=MicroListener(RATE,CHANNELS,CHUNK,micro_callback)
###
l_kreise=[]
def action(objects, event):
	starttime=time.time()
	global z, last_values1, last_values2, last_values3
	n = 50
	#print z[2048]/1000000.0
	last_values1 = (last_values1[1], last_values1[2], sum(z[186:186+n])/(n*100000.0))	##1000 Hz (?)
	endtime=time.time()
	print starttime
	print endtime
#	last_values2 = (last_values2[1], last_values2[2], sum(z[19:19+n])/(n*1000000.0))	##100 Hz (?)
#	last_values3 = (last_values3[1], last_values3[2], sum(z[1115:1115+n])/(n*10000.0))	##6000 Hz (?)
#	circ.set_radius(sum(last_values1)/3)
#	circ2.set_radius(sum(last_values2)/3)
#	circ3.set_radius(sum(last_values3)/3)
	#dt, elapsed = event.dt, event.elapsed
	#for i,circ in enumerate(objects):
	#    circ.move(0.7*dt*np.sin(elapsed*(i+1)), 0.7*dt*np.cos(elapsed*(i+1)))
	#    circ.set_color( (np.abs(np.sin(elapsed*(i+1))),np.abs(np.sin(elapsed*2*(i+1))), np.abs(np.sin(elapsed*3*(i+1))),0.3) )
	'''
	i = 0.01
	for circ_temp in l_kreise:
		circ_temp.set_radius(i)
		i+=0.005
	'''
 
last_alpha=0
 
def WinkelPos(i,alpha):
	global last_posx, last_posy, last_alpha
	#last_alpha=0
	#last_posx=0
	#last_posy=0
	#Abstand konstant 0.1
	abstand=0.1
	if i==0:
		posx=0
		posy=0
		last_posx=posx
		last_posy=posy
		return (posx,posy)
	else:
		posx=last_posx+(np.cos(last_alpha+alpha)*abstand)
#		print posx
		posy=last_posy+(np.sin(last_alpha+alpha)*abstand)
#		print posy
		last_alpha+=alpha
		last_posx=posx
		last_posy=posy
		return (posx,posy)
 
 
# create objects, register callback and start program. 
 
win = Canvas() 
objects = []
 
#for i in range(10):
#	circ = Circle(win, pos=(-0.6+0.05*i,0), radius=0.1,color = (1,0,0,0.2))
#	objects.append(circ)
 
#coordinates
x1=0.0
y1=0.25
x2=-0.5/np.sqrt(5)
y2=-0.25/np.sqrt(5)
x3=0.5/np.sqrt(5)
y3=-0.25/np.sqrt(5)
 
 
for i in range(20):
	#l_kreise.append(Circle(win,pos=(randint(-400,400)/400,randint(-400,400)/400), radius=0, color=(randint(0,10)/10,randint(0,10)/10,randint(0,10)/10,0.2)))
	l_kreise.append(Circle(win,pos=WinkelPos(i,uniform(-np.pi/2,np.pi/2)), radius=uniform(0.01,0.1), color=(randint(0,10)/10,randint(0,10)/10,randint(0,10)/10,0.2)))
#	print i
 
 
 
#circ = Circle(win, pos=(x1,y1),radius = 0.1, color=(1,0,0,0.2))
#circ2 = Circle(win, pos=(x2,y2),radius = 0.1, color=(0,1,0,0.2))
#circ3 = Circle(win, pos=(x3,y3),radius = 0.1, color=(0,0,1,0.2))
 
while True:
	win.set_action(action, objects)
	#print z[0]
	win.run()

2017-02-24: