import turtle import random from klasse_agenten import Agent p = 350 #pixels agentenradius = 15 #draw the square for the bouncing balls turtle.pu() turtle.speed(0) turtle.goto(p+agentenradius/2,p+agentenradius/2) turtle.pd() turtle.setheading(0) for i in range(4): turtle.rt(90) turtle.fd(2*p+agentenradius) wn = turtle.Screen() wn.setup(p*2+agentenradius,p*2+agentenradius) wn.bgcolor("white") #Screen background color = white wn.title("Agents Simulator") wn.tracer(0) #stops the screen from updating agents = [] anzahl_agenten = 100 for _ in range(anzahl_agenten): #range(anzahl der agents) agents.append(Agent(_)) #create agents for agent in agents: agent.ball.shape("circle") agent.ball.shapesize(agentenradius/20,agentenradius/20) #Radius von circles ## turtle.shapesize(x,y) vergrößert/verkleinert den Shape x-mal in x Richtung und y-mal in y Richtung agent.ball.color("green") agent.ball.penup() #not draw a line agent.ball.speed(0) #Geschwindigkeitsänderung #random xcor and ycor for each ball x = random.randint(-p,p) y = random.randint(-p,p) agent.ball.goto(x,y) #random ycor speed between -3 and 3, no 0 agent.ball.dy = random.randint(-1,1) while agent.ball.dy == 0: agent.ball.dy = random.randint(-1,1) #random xcor speed between -3 and 3, no 0 agent.ball.dx = random.randint(-1,1) while agent.ball.dx == 0: agent.ball.dx = random.randint(-1,1) agents[1].anstecken() #first ball will be colored red agents[1].tage = 801 #infizierten = [1] #numbers as the positions in the list of balls, which are colored red #recovered = [] while True: wn.update() #the movements are smoother for agent in agents: agent.ball.sety(agent.ball.ycor() + agent.ball.dy) #sets the balls ycor to (the current ycor plus the change in y) agent.ball.setx(agent.ball.xcor() + agent.ball.dx) #check for a bounce (floor or bottom collision) if agent.ball.ycor() < -p: agent.ball.sety(-p) agent.ball.dy *= -1 if agent.ball.ycor() > p: agent.ball.sety(p) agent.ball.dy *= -1 #check for a wall collision if agent.ball.xcor() < -p: agent.ball.setx(-p) agent.ball.dx *= -1 if agent.ball.xcor() > p: agent.ball.setx(p) agent.ball.dx *= -1 #check for collisions between the balls for i in range(0,len(agents)): for j in range(i+1, len(agents)): #check for a collision if agents[i].ball.distance(agents[j].ball) < agentenradius: #switch the behaviours of these two balls agents[i].ball.dx , agents[j].ball.dx = agents[j].ball.dx, agents[i].ball.dx agents[i].ball.dy , agents[j].ball.dy = agents[j].ball.dy, agents[i].ball.dy # 0.9 = Wahrscheinlichkeit einer Infektion, Inkubation und Ansteckung if agents[i].zustand == 'I' and agents[j].zustand == 'S' and random.random() < 0.9: agents[j].exposure() if agents[j].zustand == 'I' and agents[i].zustand == 'S' and random.random() < 0.9: agents[i].exposure() for k in range(0,len(agents)): if agents[k].tage >= 1 and agents[k].tage < 800: agents[k].tage += 1 if agents[k].tage == 800: agents[k].anstecken() # Recovered nach 2000 Tagen for k in range(0,len(agents)): if agents[k].tage >= 1 and agents[k].tage < 2800: agents[k].tage += 1 if agents[k].tage == 2800: agents[k].recovered() wn.mainloop()