Benutzer-Werkzeuge

Webseiten-Werkzeuge


ws1819:pacman_code

Unterschiede

Hier werden die Unterschiede zwischen zwei Versionen gezeigt.

Link zu dieser Vergleichsansicht

Beide Seiten der vorigen Revision Vorhergehende Überarbeitung
Nächste Überarbeitung
Vorhergehende Überarbeitung
ws1819:pacman_code [2019/03/20 18:57]
rhotert
ws1819:pacman_code [2019/03/31 15:30] (aktuell)
rhotert
Zeile 1: Zeile 1:
 **Pacman Code** **Pacman Code**
 +
 +ZIP des Code:  {{:​ws1819:​pacman_uni.rar|}}
  
 Wenn ihr das Programm selbst ausprobieren möchtet braucht ihr leider alle Pakete von [[Requirements]],​ selbst damit ist ein Funktionieren alles andere als Garantiert. Wenn ein Windows update kommt geht wahrscheinlich nichts mehr. Wenn ihr das Programm selbst ausprobieren möchtet braucht ihr leider alle Pakete von [[Requirements]],​ selbst damit ist ein Funktionieren alles andere als Garantiert. Wenn ein Windows update kommt geht wahrscheinlich nichts mehr.
Zeile 102: Zeile 104:
     def save(self, name):     def save(self, name):
         self.model.save_weights(name)         self.model.save_weights(name)
 +        ​
 +EPISODES = 22
 +
 +
 +env = gym.make('​MsPacman-v0'​)
 +state_size = env.observation_space.shape
 +action_size = env.action_space.n
 +agent = DQNAgent(state_size,​ action_size)
 +done = False
 +batch_size = 32
 +
 +for e in range(EPISODES):​
 +    state = env.reset()
 +    state = np.reshape(state,​ (1,)+ state_size)
 +    cum_reward = 0
 +    for time in range(500):
 +        env.render()
 +        action = agent.act(state)
 +        next_state, reward, done, _ = env.step(action)
 +        #​additional_reward = -(state[0,​0] + state[0,​0]*state[0,​2]-state[0,​1]*state[0,​3])##​faktore aus probieren
 +        reward = reward #+ additional_reward if not done else 10 #
 +        cum_reward += reward
 +        next_state = np.reshape(next_state,​ (1,)+ state_size)
 +        agent.remember(state,​ action, reward, next_state, done,​reward,​1)
 +        state = next_state
 +        if done:
 +            print("​episode:​ {}/{}, score: {}, e: {:.2}"
 +                  .format(e, EPISODES, time, agent.epsilon))
 +            break
 +        if len(agent.memory) > batch_size:
 +            loss = agent.replay(batch_size)
 +            # Logging training loss and actual reward every 10 timesteps
 +            if time % 10 == 0:
 +                print("​episode:​ {}/{}, time: {}, cumulative reward: {:.4f}, loss: {:​.4f}"​.format(e,​ EPISODES, time, cum_reward, loss)) ​
 +        ​
 +    ​
 +    for i in range(time):​
 +        pos = -i-1
 +        agent.memory[-i-2][-2] += reward
 +        for j in range(-time,​pos):​
 +            new_total =  agent.memory[j][-2] + agent.memory[pos][2]
 +            mem = agent.memory[j]
 +            agent.memory[j][-1] =new_total
 +
 +    for i in range(time):​
 +        pos = -i-1
 +        imp = max(agent.memory[pos][-2]-agent.model.predict(agent.memory[pos][0])[0,​agent.memory[pos][1]],​0)
 +        mem = agent.memory[pos]
 +        agent.memory[pos][-1] = imp
 +            ​
 +            ​
 +    agent.save("​qlearning_Acrobot_3versuche"​)
 +    ​
 +  ​
 +import gym
 +env = gym.make('​MsPacman-v0'​)
 +state_size = env.observation_space.shape
 +action_size = env.action_space.n
 +agent = DQNAgent(state_size,​ action_size)
 +done = False
 +batch_size = 32
 +zähler=0
 +
 +#​agent.load("​qlearning_Acrobot_3versuche"​)
 +
 +import time  as ti
 +for e in range(100):
 +    state = env.reset()
 +    #state[0] = state[0] + np.random.randn()*0.1
 +    #state[1] = state[1] + np.random.randn()*0.1
 +    #state[2] = state[2] + np.random.randn()*0.1
 +    #state[3] = state[3] + np.random.randn()*0.1
 +    #​env.env.state = state
 +    state = np.reshape(state,​ [1, state_size])
 +    for time in range(2000):​
 +        ​
 +        env.render()
 +        agent.epsilon = 0
 +        action = agent.act(state)
 +        next_state, reward, done, _ = env.step(action)
 +        next_state = np.reshape(next_state,​ [1, state_size])
 +        state = next_state
 +        if done:
 +            zähler+=1
 +            print (zähler, ​  "​Duration:​ ", time)
 +            break
 +            ​
 +    else:
 +        print ("​Volle Zeit")
ws1819/pacman_code.1553104629.txt.gz · Zuletzt geändert: 2019/03/20 18:57 von rhotert